skip to main content

NPRE News

Ruzic-led Group Develops Simple N95 Respirator Mask Decontamination Technology with Microwave Oven Plasmas

Ruzic-led Group Develops Simple N95 Respirator Mask Decontamination Technology with Microwave Oven Plasmas

8/5/2020 9:33:28 AM Veronica Severini, Colleen Reynolds, and Phillip Kisubika

In the early days of the pandemic, hospitals faced a shortage of personal protective equipment (PPE), especially N95 respirator masks. As COVID-19 cases rebound across the nation and we face another potential shortage, the question of how to decontaminate N95 respirator masks remains. Fortunately, a team led by NPRE professor David Ruzic has proven results of a solution that could be used to decontaminate respirator masks using a microwave oven, funded by a $30,000 grant from the Jump ARCHES endowment. Jump Applied Research in Community Health through Engineering and Simulation (ARCHES) is a partnership between Jump Simulation and Education Center at OSF HealthCare and the Health Care Engineering Systems Center in The Grainger College of Engineering.

David N. Ruzic
David N. Ruzic

Professor Ruzic’s strategy consists of creating a plasma inside the microwave oven using common household supplies including ceramic coffee cups, wire, hydrogen peroxide, and saline solution. The combination of these materials allows for creation of an intense plasma, which can decontaminate the mask within approximately 30 seconds. View this video on Professor Ruzic’s “Illinois EnergyProf” YouTube channel to learn about the process.

“This technology would enable hospitals, nursing homes, and first responders to use a microwave oven to decontaminate masks with materials they already have on hand,” Ruzic said. “We have shown that 30 seconds of plasma exposure is sufficient to kill viruses and have submitted our findings to the CDC’s Journal of Emerging Infectious Diseases. We have also sent treated masks to the CDC for testing and passed their filtration and fit standards, even after three cycles of decontamination.” A preprint of the work is available in MedRXiv.

Thanh Huong Nguyen
Thanh Huong Nguyen
Professor Ruzic’s team includes Illinois civil and environmental engineering Professor Helen Nguyen and Jump Simulation and Education Center engineer Brent Cross. Professor Nguyen’s research group specializes in environmental engineering with an emphasis on pathogen transmission and control. They have the facilities to test and expertise to determine the extent exposure to the plasma can inactivate the viruses on N95 respirator masks. University of Illinois civil and environmental engineering Professor Vishal Verma’s group also assisted with measurement to ensure the treatment did not compromise the integrity and filtration efficiency of the respirator masks.

“Professors Helen Nguyen, Vishal Verma, and their students have been fantastic co-workers,” Ruzic said. “Without them, we would have had no idea if this technology was useful. I’d like to note also that some of the initial ideas came from Starfire Industries [led by 2019 NPRE Advocate Brian Jurczyk], and its help is also very much appreciated. I look forward to working with OSF HealthCare Heart of Mary Medical Center in Urbana and greatly appreciate the funding from Jump ARCHES. We recently demonstrated this technique to OSF, and their leaders were extremely impressed, and were excited they could easily replicate the process themselves.”

Ruzic and his team hope that this technology will prove useful  as conservation efforts continue for N95 respirator masks. Knowing there is a potential solution could provide peace of mind for medical providers.

“In case of real shortages, we would consider this technique a key tool in keeping our staff and patients safe,” John Kreckman, M.D., Chief Medical Officer of OSF HealthCare Heart of Mary Medical Center in Urbana said.

In March 2020, the Jump ARCHES program  sent out an emergency request for proposals addressing the pandemic, and Ruzic’s proposal was one of 17 accepted for funding. View the other 16 research projects here. This partnership provides direct access and competitive grants to engineers and physicians from OSF HealthCare and the University of Illinois system working together to combat problems in health care.

Next steps for Professor Ruzic and his team include introducing the technology to the OSF Peoria Campus and waiting acceptance to the CDC’s Journal of Emerging Infectious Diseases.

This strategy should not be applied for use by individuals seeking to decontaminate cloth masks or N95 masks at home. This information is designed for use by health care and supporting agencies.