Research Groups
Currently active research groups include:
Advanced Reactors and Fuel Cycles
Analysis of Reactor Transients and Stability (ARTS)
The ARTS group performs deterministic safety analysis by developing and validating advanced methods to accurately determine reactor safety margins and reactor behavior. By performing high-fidelity numerical predictions of the reactor behavior in abnormal transient scenarios of safety significance, our work supports the nuclear reactor safety analysis, and increases the fidelity of primary system simulation. This approach is at the heart of nuclear power’s excellent safety record – always striving to improve current tools and methods.
Center for Plasma Material Interactions
Fusion Studies Lab
In additional to general fusion research, the research group is working on inertial electrostatic confinement fusion in conjunction with Daimler-Benz Aerospace, dense plasma focus, plus much of the pioneering work on direct energy conversion for nuclear pumped lasers.
Heuser Research Group
The LENRs Group
The Materials Group
The group investigates a wide variety of topics within the realm of materials research including mechanical properties, microstructural evaluations, plus radiation damage investigations, and modeling. Materials such as copper alloys nickel-based alloys, stainless steels, ferritic steels, and silicon-carbide composites are studied using a variety of analytical techniques electron microscopy and spectroscopy.
Multiphase Thermo-fluid Dynamics Laboratory
This group performs experiments related to thermal hydraulics and multiphase flow. Phenomena studied include boiling, condensation, critical heat flux, natural circulation, two-phase flow instabilities, bubble dynamics, and two-phase transport. Utilizing advanced instrumentation, data from these experiments are used in model development and validation of computational tools.
Non-Equilibrium Matter Laboratory
This laboratory focuses on the study of non-equilibrium matter, with particular emphasis on liquids and soft matter, using integrated neutron and synchrotron light experimental probes and atomistic modeling and simulation. The structure and dynamics of these systems are either inherently complex or driven away from equilibrium by extreme conditions. In particular, our current interests include a range of fundamental and technical problems involving slow phenomena and rare events, such as: materials far from equilibrium and in extreme environments; extreme properties of liquids; and glassy or jammed soft matters.
North American Technical Center
Radiation Imaging Group
Research is on developing radiation sensor and systems for visualizing the distribution of radioactivity in surrounding objects, patients, and small lab animals etc. Current emphasis includes (a) developing novel radiation sensors for detecting X-ray, gamma rays and neutrons, and (b) developing nuclear techniques for detecting and imaging a tiny amount radiolabeled molecules inside small lab animals.
Radiological Instrumentation Laboratory (RIL)
Dr. Shiva Abbaszadeh, director
The RIL group is interested in new radiation detection and instrumentation for imaging and sensing applications. This includes the development of novel detector technology and imaging techniques, data processing, experimental validation, modelling, computational problem solving, and quantitative characterization of biological processes.
Socio-Technical Risk Analysis (SoTeRiA) Laboratory
Dr. Zahra Mohaghegh, director
The Socio-Technical Risk Analysis (SoTeRiA) Laboratory is evolving Probabilistic Risk Assessment (PRA) by explicitly incorporating the underlying science of accident causation into risk scenarios. SoTeRiA laboratory has pioneered two key areas of theoretical and methodological innovations: (1) spatio-temporal causal modeling of social and physical failure mechanisms in PRA, and (2) the fusion of big data analytics with PRA. The Lab’s current projects include: Fire PRA; Location-specific Loss- Of-Coolant Accident (LOCA) Frequency Estimations; Risk-Informed Resolution of Generic Safety Issue 191; Human and Organizational Influences on System Risk; Risk-Informed Regulation; and Risk-Informed Emergency Preparedness, Planning and Response.