Research Groups

Important contributions have been made recently by several research groups working in the following areas: inertial electrostatic confinement for fusion applications and for neutron, X-ray, and gamma radiation sources; energy cell performance for heat release and material transmutations; advanced computational techniques applied to stochastic radiation transport, reactor physics, and safety, including Lie groups and group invariant difference schemes; perceptual displays and temporal pattern recognition applied to reactor control and operation; nuclear nonproliferation and safeguards; fusion blanket and diverter materials behavior and performance; plasma processing of electronic materials, plasma-induced sputtering, and plasma measurements; nuclear radiation effects on materials and neutron scattering measurements; materials behavior under high-temperature corrosion and radiation bombardment environments, including nondestructive examination; magnetic resonance imaging for cancer cell treatment; and thermal hydraulics, including multiphase flows, boiling in porous media, molten jet breakup, and turbulent structure modeling; and large-scale computer modeling of fission reactor systems, including reactor and control systems visualization.

Currently active research groups include:

Advanced Reactors and Fuel Cycles

Dr. Katy Huff, director
The ARFC group seeks to advance the safety and sustainability of nuclear energy production through improved reactor designs, fuel cycle strategies, and waste management techniques. In the area of advanced reactors, our work focuses on extending current simulation tools with features essential to advanced reactor multiphysics. In the context of the broader nuclear fuel cycle, the ARFC group emphasizes modeling, simulation, and analysis of the global nuclear fuel cycle, with an emphasis on sustainability. A crosscutting theme of our research is an emphasis on advancing methods and software for computational nuclear engineering. Accordingly, the Advanced Reactors and Fuel Cycles group is proud to be affiliated with the University of Illinois National Center for Supercomputing Applications and its Blue Waters computing facility.

Analysis of Reactor Transients and Stability (ARTS)

Dr. Tomasz Kozlowski, director
The ARTS group performs deterministic safety analysis by developing and validating advanced methods to accurately determine reactor safety margins and reactor behavior. By performing high-fidelity numerical predictions of the reactor behavior in abnormal transient scenarios of safety significance, our work supports the nuclear reactor safety analysis, and increases the fidelity of primary system simulation. This approach is at the heart of nuclear power’s excellent safety record – always striving to improve current tools and methods.

Center for Plasma Material Interactions

Dr. David Ruzic, director
The primary objective of CPMI is the study of plasma-material interactions relevant to fusion, semiconductor manufacturing, and plasma processing through a combination of experimental and computational means. CPMI has facilities for the study of fusion materials, High Power Impulse Magnetron Sputtering (HiPIMS), liquid metals, Extreme Ultraviolet Lithography (EUVL), laser-material interactions, and more. Projects are supported by both government and commercial partners to further the application and knowledge of plasma physics.

Fusion Studies Lab

Dr. George Miley, director
In additional to general fusion research, the research group is working on inertial electrostatic confinement fusion in conjunction with Daimler-Benz Aerospace, dense plasma focus, plus much of the pioneering work on direct energy conversion for nuclear pumped lasers.

Heuser Research Group

The LENRs Group

Part of the research in the Low Energy Nuclear Reaction (LENR) Lab consists of experiments that use either an electrolysis process, a high pressure, or an arc process to force hydrogen atoms into the lattice structure of a thin film (500-1000 A) of metal. A major goal of this research is to examine the metal before and after the experiment, to establish the signatures of LENRs by studying transmutation products. Another goal is to measure the energy output of the unit. If an ample amount is released, such cells offer an attractive small power source for future distributed energy systems.

The Materials Group

Dr. James F. Stubbins, director
The group investigates a wide variety of topics within the realm of materials research including mechanical properties, microstructural evaluations, plus radiation damage investigations, and modeling. Materials such as copper alloys nickel-based alloys, stainless steels, ferritic steels, and silicon-carbide composites are studied using a variety of analytical techniques electron microscopy and spectroscopy.

Non-Equilibrium Matter Laboratory

Dr. Yang Zhang, director
This laboratory focuses on the study of non-equilibrium matter, with particular emphasis on liquids and soft matter, using integrated neutron and synchrotron light experimental probes and atomistic modeling and simulation. The structure and dynamics of these systems are either inherently complex or driven away from equilibrium by extreme conditions. In particular, our current interests include a range of fundamental and technical problems involving slow phenomena and rare events, such as: materials far from equilibrium and in extreme environments; extreme properties of liquids; and glassy or jammed soft matters.

North American Technical Center

Dr. David W. Miller, regional director

Radiation Imaging Group

Dr. Ling Jian Meng, director
Research is on developing radiation sensor and systems for visualizing the distribution of radioactivity in surrounding objects, patients, and small lab animals etc. Current emphasis includes (a) developing novel radiation sensors for detecting X-ray, gamma rays and neutrons, and (b) developing nuclear techniques for detecting and imaging a tiny amount radiolabeled molecules inside small lab animals.

Radiological Instrumentation Laboratory (RIL)

Dr. Shiva Abbaszadeh, director
The RIL group is interested in new radiation detection and instrumentation for imaging and sensing applications. This includes  the development of novel detector technology and imaging techniques, data processing, experimental validation, modelling,  computational problem solving, and quantitative characterization of biological processes.

Socio-Technical Risk Analysis (SoTeRiA) Laboratory

Dr. Zahra Mohaghegh, director

The Socio-Technical Risk Analysis (SoTeRiA) Laboratory is evolving Probabilistic Risk Assessment (PRA) by explicitly incorporating the underlying science of accident causation into risk scenarios. SoTeRiA laboratory has pioneered two key areas of theoretical and methodological innovations: (1) spatio-temporal causal modeling of social and physical failure mechanisms in PRA, and (2) the fusion of big data analytics with PRA. The Lab’s current projects include: Fire PRA; Location-specific Loss- Of-Coolant Accident (LOCA) Frequency Estimations; Risk-Informed Resolution of Generic Safety Issue 191; Human and Organizational Influences on System Risk; Risk-Informed Regulation; and Risk-Informed Emergency Preparedness, Planning and Response.


Virtual Education and Research Laboratory

The group focuses on the development of innovative numerical methods and their implementation on high performance computing machines. Research efforts center on problems in nuclear engineering, with emphasis on thermal-hydraulics and reactor physics.